3.10.59 \(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [959]

Optimal. Leaf size=342 \[ -\frac {2 (a-b) \sqrt {a+b} \left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (15 A b^2-b^2 (5 B-9 C)+8 a^2 C-2 a b (5 B+C)\right ) \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d} \]

[Out]

-2/15*(a-b)*(15*A*b^2-10*B*a*b+8*C*a^2+9*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)
/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d-2/15*(15*A*b^2
-b^2*(5*B-9*C)+8*a^2*C-2*a*b*(5*B+C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1
/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d+2/15*(5*B*b-4*C*a)*(a+b*
sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d+2/5*C*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.46, antiderivative size = 342, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4177, 4167, 4090, 3917, 4089} \begin {gather*} -\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \left (8 a^2 C-10 a b B+15 A b^2+9 b^2 C\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^4 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \left (8 a^2 C-2 a b (5 B+C)+15 A b^2-b^2 (5 B-9 C)\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^3 d}+\frac {2 (5 b B-4 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b^2 d}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(
a - b))])/(15*b^4*d) - (2*Sqrt[a + b]*(15*A*b^2 - b^2*(5*B - 9*C) + 8*a^2*C - 2*a*b*(5*B + C))*Cot[c + d*x]*El
lipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sq
rt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b^3*d) + (2*(5*b*B - 4*a*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/
(15*b^2*d) + (2*C*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(5*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4177

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^
(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m +
2) + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C,
 m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx &=\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {2 \int \frac {\sec (c+d x) \left (a C+\frac {1}{2} b (5 A+3 C) \sec (c+d x)+\frac {1}{2} (5 b B-4 a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{5 b}\\ &=\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b (5 b B+2 a C)+\frac {1}{4} \left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {\left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}-\frac {\left (15 A b^2-b^2 (5 B-9 C)+8 a^2 C-2 a b (5 B+C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=-\frac {2 (a-b) \sqrt {a+b} \left (15 A b^2-10 a b B+8 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (15 A b^2-b^2 (5 B-9 C)+8 a^2 C-2 a b (5 B+C)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(3332\) vs. \(2(342)=684\).
time = 24.80, size = 3332, normalized size = 9.74 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((4*(15*A*b^2 - 10*a*b*B + 8*a^2*C
+ 9*b^2*C)*Sin[c + d*x])/(15*b^3) + (4*Sec[c + d*x]*(5*b*B*Sin[c + d*x] - 4*a*C*Sin[c + d*x]))/(15*b^2) + (4*C
*Sec[c + d*x]*Tan[c + d*x])/(5*b)))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[a + b*Sec[c + d*
x]]) + (4*((-2*A)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (4*a*B)/(3*b*Sqrt[b + a*Cos[c + d*x]]*Sqrt[S
ec[c + d*x]]) - (6*C)/(5*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (16*a^2*C)/(15*b^2*Sqrt[b + a*Cos[c +
d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*A*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) + (2*B*Sqrt[Sec[c + d*x]])
/(3*Sqrt[b + a*Cos[c + d*x]]) + (4*a^2*B*Sqrt[Sec[c + d*x]])/(3*b^2*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Sqrt
[Sec[c + d*x]])/(15*b^3*Sqrt[b + a*Cos[c + d*x]]) - (14*a*C*Sqrt[Sec[c + d*x]])/(15*b*Sqrt[b + a*Cos[c + d*x]]
) - (2*a*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) + (4*a^2*B*Cos[2*(c + d*x)]*Sqrt[
Sec[c + d*x]])/(3*b^2*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(15*b^3*Sqrt[
b + a*Cos[c + d*x]]) - (6*a*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c
 + d*x)/2]^2*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C
+ 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellip
ticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(15*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C)
)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c +
 d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[
Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*((2*a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Si
n[c + d*x]*(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b
 + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(1
5*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[
c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*
a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*(b
+ a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*
(-2*(a + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(15*A*b^2 + 8
*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (15*A*b^2 - 10*a*b*B + 8*a
^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*Sqrt[b + a*Cos
[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-1/2*((15*A*b^2 - 10*a*b*B +
8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4) - ((a + b)*(15*A*b^2 - 10*a*b*B + 8*a
^2*C + 9*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a
 - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[
c + d*x]/(1 + Cos[c + d*x])] + (b*(15*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[(b + a*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[
c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - ((a
 + b)*(15*A*b^2 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c
+ d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c +
 d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (b*(15*A*b^2
 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c
 + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c
+ d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + a*(15*A*b^2
 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (15*A*b^2 - 1
0*a*b*B + 8*a^2*C + 9*b^2*C)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (15*A*b^2
 - 10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (b*
(15*A*b^2 + 8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5...

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(3146\) vs. \(2(312)=624\).
time = 0.41, size = 3147, normalized size = 9.20

method result size
default \(\text {Expression too large to display}\) \(3147\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-15*A*sin(d*x+c)*cos(d*x+c)^3*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+5*B*cos(d*x+c)^2*a*b^2-10*B*cos(d*x+c)^4*a^2*b+5*B*cos(d*x+c)^4*a*b^2+10*B*c
os(d*x+c)^3*a^2*b-10*B*cos(d*x+c)^3*a*b^2-3*C*b^3-15*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3
+15*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-8*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))
^(1/2))*a^3-9*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+
b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+9*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a
-b)/(a+b))^(1/2))*b^3-15*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+15*A*sin(d*x+c)*cos(d*x+c)^
2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*b^3-8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-9*C*sin(d*x+c)*c
os(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+9*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+5*B*co
s(d*x+c)^3*b^3-5*B*cos(d*x+c)*b^3+8*C*cos(d*x+c)^4*a^3+15*A*cos(d*x+c)^3*b^3-8*C*cos(d*x+c)^3*a^3+9*C*cos(d*x+
c)^3*b^3-15*A*cos(d*x+c)^2*b^3-6*C*cos(d*x+c)^2*b^3-4*C*cos(d*x+c)^4*a^2*b+9*C*cos(d*x+c)^4*a*b^2-15*A*cos(d*x
+c)^3*a*b^2+8*C*cos(d*x+c)^3*a^2*b-10*C*cos(d*x+c)^3*a*b^2-4*C*cos(d*x+c)^2*a^2*b+C*cos(d*x+c)*a*b^2+15*A*cos(
d*x+c)^4*a*b^2+10*B*sin(d*x+c)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b+10*B*sin(d*x+c)*cos(d*x+c)^3*Ell
ipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*a*b^2-10*B*sin(d*x+c)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))
^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2+10*B*sin(d*x+c)*
cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b+10*B*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2-
10*B*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2+5*B*sin(d*x+c)*cos(d*x+c)^3*EllipticF((-1+cos(d
*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*b^3+5*B*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^3-8*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((
a-b)/(a+b))^(1/2))*a^2*b-9*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+co
s(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+8*C*sin(d*x+c)*cos(d*x+
c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))
/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+2*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos
(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-15*A*sin(
d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(
(-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*
a^2*b-9*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1
/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3 + A*sec(d*x + c)^2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________